Skip to main content

Advertisement

Log in

Natural hazards in Australia: extreme bushfire

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Bushfires are one of the most frequent natural hazards experienced in Australia. Fires play an important role in shaping the landscape and its ecological dynamics, but may also have devastating effects that cause human injuries and fatalities, as well as broad-scale environmental damage. While there has been considerable effort to quantify changes in the occurrence of bushfire in Australia, a comprehensive assessment of the most extreme bushfire cases, which exact the greatest economic and environmental impacts, is lacking. In this paper we reflect upon recently developed understanding of bushfire dynamics to consider (i) historical changes in the occurrence of extreme bushfires, and (ii) the potential for increasing frequency in the future under climate change projections. The science of extreme bushfires is still a developing area, thus our conclusions about emerging patterns in their occurrence should be considered tentative. Nonetheless, historical information on noteworthy bushfire events suggests an increased occurrence in recent decades. Based on our best current understanding of how extreme bushfires develop, there is strong potential for them to increase in frequency in the future. As such there is a pressing need for a greater understanding of these powerful and often destructive phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. See www.depi.vic.gov.au/fire-and-emergencies/managing-risk-and-learning-about-managing-fire/bushfire-history. Accessed 4 February 2016.

References

  • Ashe B, McAneney KJ, Pitman AJ (2009) Total cost of fire in Australia. J Risk Res 12:121–136

    Article  Google Scholar 

  • Attiwill P, Binkley D (2013) Exploring the mega-fire reality: a ‘Forest Ecology and Management’conference. For Ecol Manag 294:1–3

    Article  Google Scholar 

  • Banks, J.C.G. (1989). A history of forest fire in the Australian Alps. The scientific significance of the Australian Alps, 265–280.

  • Beer T, Williams A (1995) Estimating Australian forest fire danger under conditions of doubled carbon dioxide concentrations. Clim Chang 29:169–188

    Article  Google Scholar 

  • Bowman DMJS (1998) The impact of aboriginal landscape burning on the Australian biota. New Phytol 140(3):385–410

    Article  Google Scholar 

  • Bowman DM, Murphy BP, Williamson GJ, Cochrane MA (2014) Pyrogeographic models, feedbacks and the future of global fire regimes. Glob Ecol Biogeogr 23:821–824

    Article  Google Scholar 

  • Bradstock RA (2010) A biogeographic model of fire regimes in Australia: contemporary and future implications. Glob Ecol Biogeogr 19:145–158

    Article  Google Scholar 

  • Bradstock RA, Cohn JS (2002) Demographic characteristics of mallee pine (Callitris verrucosa) in fire-prone mallee communities of central New South Wales. Aust J Bot 50:653–665

    Article  Google Scholar 

  • Bradstock RA, Gill MA (2001) Living with fire and biodiversity at the urban edge: in search of a sustainable solution to the protection problem in southern Australia. J Med Econ 2:179–195

    Google Scholar 

  • Bradstock R, Penman T, Boer M, Price O, Clarke H (2014) Divergent responses of fire to recent warming and drying across south-eastern Australia. Glob Chang Biol 20:1412–1428

    Article  Google Scholar 

  • Burrows ND, Ward B, Robinson AD (1995) Jarrah forest fire history from stem analysis and anthropological evidence. Aust For 58(1):7–16

    Article  Google Scholar 

  • Caccamo G, Chisholm LA, Bradstock RA, Puotinen ML, Pippen BG (2012) Monitoring live fuel moisture content of heathland, shrubland and sclerophyll forest in south-eastern Australia using MODIS data. Int J Wildland Fire 21:257–269

    Article  Google Scholar 

  • Cary GJ (2002) Importance of a changing climate for fire regimes in Australia. In: Bradstock RA, Gill AM, Williams JE (eds) Flammable Australia: The Fire Regimes and Biodiversity of a Continent. Cambridge University Press, Cambridge, UK, pp. 26–46

    Google Scholar 

  • Cary GJ, Keane RE, Gardner RH, Lavorel S, Flannigan MD, Davies ID, Li C, Lenihan JM, Rupp TS, Mouillot F (2006) Comparison of the sensitivity of landscape-fire-succession models to variation in terrain, fuel pattern, climate and weather. Landsc Ecol 21:121–137

    Article  Google Scholar 

  • Chapman DW (1999) Natural Hazards, Second edn. Oxford University Press, New York

    Google Scholar 

  • Chatto, K. (Ed.) (1999) Development, behaviour, threat and meteorological aspects of a plume-driven bushfire in west-central Victoria: Berringa Fire 25–26 February 1995. Creswick Research Station, Research Report 48.

  • Clarke HG, Smith PL, Pitman AJ (2011) Regional signatures of future fire weather over eastern Australia from global climate models. Int J Wildland Fire 20:550–562

    Article  Google Scholar 

  • Clarke H, Lucas C, Smith P (2013) Changes in Australian fire weather between 1973 and 2010. Int J Climatol 33:931–944

    Article  Google Scholar 

  • Cruz MG, Sullivan AL, Gould JS, Sims NC, Bannister AJ, Hollis JJ, Hurley RJ (2012) Anatomy of a catastrophic wildfire: the Black Saturday Kilmore East fire in Victoria, Australia. For Ecol Manag 284:269–285

    Article  Google Scholar 

  • CSIRO and Bureau of Meteorology (2015) Climate Change in Australia Information for Australia’s Natural Resource Management Regions: Technical Report. CSIRO and Bureau of Meteorology, Australia

    Google Scholar 

  • Dowdy, A.J. & Mills, G.A. (2009) Atmospheric states associated with the ignition of lightning-attributed fires. Centre for Australian Weather and Climate Research.

    Google Scholar 

  • Evans JP, Ji F, Lee C, Smith P, Argüeso D, Fita L (2014) Design of a regional climate modelling projection ensemble experiment – NARCliM. Geosci Model Dev 7:621–629

    Article  Google Scholar 

  • Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for global wildland fire. Int J Wildland Fire 18:483–507

    Article  Google Scholar 

  • Fletcher M-S, Wolfe BB, Whitlock C, Pompeani DP, Heijnis H, Haberle SG, Gadd PS, Bowman DM (2014) The legacy of mid-Holocene fire on a Tasmanian montane landscape. J Biogeogr 41:476–488

    Article  Google Scholar 

  • Fletcher M-S, Benson A, Heijnis H, Gadd P, Cwynar LC, Rees AB (2015) Changes in biomass burning mark the onset an ENSO-influenced climate regime at 42° S in southwest Tasmania, Australia. Quat Sci Rev 122:222–232

    Article  Google Scholar 

  • Fox-Hughes P (2015) Characteristics of some days involving abrupt increases in fire danger. J Appl Meteorol Climatol 54(12):2353–2363

    Article  Google Scholar 

  • Fox-Hughes P, Harris R, Lee G, Grose M, Bindoff N (2014) Future fire danger climatology for Tasmania, Australia, using a dynamically downscaled regional climate model. Int J Wildland Fire 23:309–321

    Article  Google Scholar 

  • Fromm M, Lindsey DT, Servranckx R, Yue G, Trickl T, Sica R, Doucet P, Godin-Beekmann S (2010) The untold story of pyrocumulonimbus. Bull Am Meteorol Soc 91:1193–1209

    Article  Google Scholar 

  • Gibbons P, Van Bommel L, Gill AM, Cary GJ, Driscoll DA, Bradstock RA, Knight E, Moritz MA, Stephens SL, Lindenmayer DB (2012) Land management practices associated with house loss in wildfires. PLoS One 7(1):p.e29212

    Article  Google Scholar 

  • Gill AM, Stephens SL, Cary GJ (2013) The world-wide ‘wildfire’ problem. Ecol Appl 23:438–454

    Article  Google Scholar 

  • Grose MR, Fox-Hughes P, Harris RM, Bindoff NL (2014) Changes to the drivers of fire weather with a warming climate–a case study of southeast Tasmania. Clim Chang 124:255–269

    Article  Google Scholar 

  • Hasson AEA, Mills GA, Timbal B, Walsh K (2009) Assessing the impact of climate change on extreme fire weather events over southeastern Australia. Clim Res 39:159

    Article  Google Scholar 

  • Heinrich I, Allen K (2013) Current issues and recent advances in Australian dendrochronology: where to next? Geogr Res 51:180–191

    Article  Google Scholar 

  • Hendon HH, Lim EP, Nguyen H (2014) Seasonal variations of subtropical precipitation associated with the southern annular mode. J Clim 27:3446–3460

    Article  Google Scholar 

  • Hennessy K, Lucas C, Nicholls N, Bathols J, Suppiah R, Ricketts J (2005) Climate change impacts on fire weather in south-east Australia. CSIRO, Canberra

    Google Scholar 

  • Higuera PE, Gavin DG, Bartlein PJ, Hallett DJ (2011) Peak detection in sediment–charcoal records: impacts of alternative data analysis methods on fire-history interpretations. Int J Wildland Fire 19:996–1014

    Article  Google Scholar 

  • Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, Bowman DM (2015) Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun 6

  • King KJ, de Ligt RM, Cary GJ (2011) Fire and carbon dynamics under climate change in south eastern Australia: insights from FullCAM and FIRESCAPE modelling. Int J Wildland Fire 20:563–577

    Article  Google Scholar 

  • Lim WH, Roderick LM (2009) An Atlas of the Global Water Cycle: Based on the IPCC AR4 Climate Models. ANU E Press, Canberra

    Google Scholar 

  • Lim EP, Hendon HH, Arblaster JM, Chung C, Moise AF, Hope P, Young G, Zhao M (2016) Interaction of the recent 50 year SST trend and La Niña 2010: amplification of the Southern Annular Mode and Australian springtime rainfall. Clim Dyn:1–19

  • Liu Y, Stanturf J, Goodrick S (2010) Trends in global wildfire potential in a changing climate. For Ecol Manag 259:685–697

    Article  Google Scholar 

  • Lu W, Charney JJ, Zhong S, Bian X, Liu S (2011) A North American regional reanalysis climatology of the Haines Index. Int J Wildland Fire 20:91–103

    Google Scholar 

  • Lucas C, Hennessy K, Mills G, Bathols J (2007) Bushfire weather in southeast Australia: recent trends and projected climate change impacts. Bushfire Cooperative Research Centre, Melbourne

    Google Scholar 

  • Luo L, Tang Y, Zhong S, Bian X, Heilman WE (2013) Will future climate favor more erratic wildfires in the western United States? J Appl Meteorol Climatol 52:2410–2417

    Article  Google Scholar 

  • Mariani M, Fletcher M-S (2016) The Southern Annular Mode determines inter-annual and centennial-scale fire activity in temperate southwest Tasmania. Australia, Geophysical Research Letters

    Google Scholar 

  • Matthews S, Sullivan AL, Watson P, Williams RJ (2012) Climate change, fuel and fire behaviour in a eucalypt forest. Glob Chang Biol 18:3212–3223

    Article  Google Scholar 

  • McArthur, A.G. (1967) Fire behaviour in eucalypt forests. Commonwealth Department of National Development, Forestry and Timber Bureau, Leaflet No. 107. Canberra, ACT. 36 pp.

  • McRae R, Sharples JJ (2011) A conceptual framework for assessing the risk posed by extreme bushfires. Aust J Emerg Manag 26:47–53

    Google Scholar 

  • McRae R, Sharples JJ (2014) Forecasting conditions conducive to blow-up fire events. CAWCR Res Lett 11:14–19

    Google Scholar 

  • McRae R, Sharples JJ, Fromm M (2015) Linking local wildfire dynamics to pyroCb development. Nat Hazards Earth Syst Sci 15:417–428

    Article  Google Scholar 

  • Miller, N.L., & Schlegel, N.J. (2006) Climate change projected fire weather sensitivity: California Santa Ana wind occurrence. Geophysical Research Letters, 33.

  • Mills GA (2005) A re-examination of the synoptic and mesoscale meteorology of ash Wednesday 1983. Aust Meteorol Mag 54:35–55

    Google Scholar 

  • Mills GA (2008) Abrupt surface drying and fire weather part 2: a preliminary synoptic climatology in the forested areas of southern Australia. Aust Meteorol Mag 57:311

    Google Scholar 

  • Mills, G.A., & McCaw, W.L. (2010). Atmospheric stability environments and fire weather in Australia: Extending the Haines Index. Centre for Australian Weather and Climate Research.

    Google Scholar 

  • Mooney SD, Harrison SP, Bartlein PJ, Daniau AL, Stevenson J, Brownlie KC, Buckman S, Cupper M, Luly J, Black M, Colhoun E, D’Costa D, Dodson J, Haberle S, Hope GS, Kershaw P, Kenyon C, McKenzie M, Williams N (2011) Late Quaternary fire regimes of Australasia. Quat Sci Rev 30:28–46

    Article  Google Scholar 

  • Murphy BF, Timbal B (2008) A review of recent climate variability and climate change in southeastern Australia. Int J Climatol 28:859–879

    Article  Google Scholar 

  • Nguyen H, Evans A, Lucas C, Smith I, Timbal B (2013) The Hadley circulation in reanalyses: Climatology, variability, and change. J Clim 26:3357–3376

    Article  Google Scholar 

  • Noble IR, Gill AM, Bary GAV (1980) McArthur’s fire-danger meters expressed as equations. Aust J Ecol 5:201–203

    Article  Google Scholar 

  • O’Donnell AJ, Boer MM, McCaw WL, Grierson PF (2011a) Spatial controls of wildfire frequency in unmanaged semi-arid shrublands and woodlands. J Biogeogr 38:112–124

    Article  Google Scholar 

  • O’Donnell AJ, Boer MM, McCaw WL, Grierson PF (2011b) Climatic anomalies drive wildfire occurrence and extent in semi-arid shrublands and woodlands of southwest Australia. Ecosphere 2:1–15

    Google Scholar 

  • O’Donnell AJ, Cook ER, Palmer JG, Turney CS, Page GF, Grierson PF (2015) Tree-rings show recent summer-autumn precipitation in semi-arid northwest Australia is unprecedented within the last two centuries. PLoS One 10(6):e0128533

    Article  Google Scholar 

  • Palmer, J.G., Cook, E.R., Turney, C.S., Allen, K., Fenwick, P., Cook, B.I., O’Donnell, A., Lough, J., Grierson, P. & Baker, P. (2015) Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation. Environmental Research Letters, 10(12), p. 124002.

  • Pitman AJ, Narisma GT, McAneney J (2007) The impact of climate change on the risk of forest and grassland fires in Australia. Clim Chang 84:383–401

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57

    Article  Google Scholar 

  • Risbey JS, McIntosh PC, Pook MJ (2013) Synoptic components of rainfall variability and trends in southeast Australia. Int J Climatol 33:2459–2472

    Article  Google Scholar 

  • Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24

    Google Scholar 

  • Sharples JJ, Mills GA, McRae RH, Weber RO (2010) Foehn-like winds and elevated fire danger conditions in southeastern Australia. J Appl Meteorol Climatol 49:1067–1095

    Article  Google Scholar 

  • Sharples JJ, Mills GA, McRae RHD (2012) Extreme drying events in the Australian high-country and their implication for bushfire risk management. Aust Meteorol Oceanogr J 62:157–162

    Google Scholar 

  • Simpson CC, Sharples JJ, Evans JP, McCabe M (2013) Large eddy simulation of atypical wildland fire spread on leeward slopes. Int J Wildland Fire 22:282–296

    Article  Google Scholar 

  • Sullivan AL, Matthews S (2013) Determining landscape fine fuel moisture content of the Kilmore East ‘Black Saturday’wildfire using spatially-extended point-based models. Environ Model Softw 40:98–108

    Article  Google Scholar 

  • Tang Y, Zhong S, Luo L, Bian X, Heilman WE, Winkler J (2015) The potential impact of regional climate change on fire weather in the united states. Ann Assoc Am Geogr 105:1–21

    Article  Google Scholar 

  • Tatli H, Türkeş M (2014) Climatological evaluation of Haines forest fire weather index over the Mediterranean Basin. Meteorol Appl 21:545–552

    Article  Google Scholar 

  • Teague, B., McLeod, R., Pascoe, S. (2010) 2009 Victorian Bushfires Royal Commission Final Report. Parliament of Victoria. Available at: www.royalcommission.vic.gov.au/Commission-Reports/Final-Report

  • Thomson V (2013) Ashes of the fire fighters: Our personal journeys. Regal Printing Limited, Kowloon

    Google Scholar 

  • Verdon DC, Kiem AS, Franks SW (2004) Multi-decadal variability of forest fire risk - Eastern Australia. Int J Wildland Fire 13:165–171

    Article  Google Scholar 

  • Williams J (2013) Exploring the onset of high-impact mega-fires through a forest land management prism. For Ecol Manag 294:4–10

    Article  Google Scholar 

  • Williams AAJ, Karoly DJ, Tapper N (2001) The sensitivity of Australian fire danger to climate change. Clim Chang 49:171–191

    Article  Google Scholar 

  • Williamson, G.J., Prior, L.D., Jolly, W.M., Cochrane, M.A., Murphy, B.P. & Bowman, D.M. (2016) Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: the Australian case. Environmental Research Letters, 11(3), p. 035003.

  • Worthy, M. & Wasson, R.J. (2004) Fire as an agent of geomorphic change in southeastern Australia: implications for water quality in the Australian Capital Territory. In: Roach, I.C. (ed) Regolith 2004. Cooperative Research Centre for Landscape Environments and Mineral Exploration, pp 417–418.

Download references

Acknowledgments

This paper was a result of collaboration through the ‘Trends and Extremes’ working group as part of the Australian Water and Energy Exchanges Initiative (OzEWEX). The authors are grateful to Brian Potter and an anonymous reviewer for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. Sharples.

Additional information

This article is part of a Special Issue on “The effect of historical and future climate changes on natural hazards in Australia” edited by Seth Westra, Chris White and Anthony Kiem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharples, J.J., Cary, G.J., Fox-Hughes, P. et al. Natural hazards in Australia: extreme bushfire. Climatic Change 139, 85–99 (2016). https://doi.org/10.1007/s10584-016-1811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-016-1811-1

Keywords

Navigation