Skip to main content
Log in

Influence of asphaltene content on mechanical bitumen behavior: experimental investigation and micromechanical modeling

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The description of the mechanical behavior of bitumen on the basis of its microstructure allows its improvement and moreover the development of equivalent or even more sustainable materials with similar properties. For this reasons, a micromechanical model for bitumen is proposed, allowing the description of the viscoelastic bitumen behavior depending on characteristics of different material phases. The definition and demarcation, respectively, of material phases is based on SARA fractions, and polarity considerations that support the assumption of asphaltene micelle structures within a contiguous matrix and the assumed interactions between them. A sufficient number of static creep tests on artificially composed bitumen samples with asphaltene contents from 0 to 30 wt% served both as identification as well as validation experiments for the developed micromechanical model. An excellent agreement between experimental results and model predictions indicates that the model is able to reproduce significant microstructural effects, such as interactions between asphaltenes, which strongly influence the bitumen behavior. This model is therefore expected to contribute to a better understanding of the influence of the bitumen microstructure on the macroscopic mechanical behavior and subsequently be able to describe the mechanical consequences of microstructural effects like aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aigner E, Lackner R, Pichler C (2009) Multiscale prediction of viscoelastic properties of asphalt concrete. J Mater Civ Eng (ASCE) 21:771–780

    Article  Google Scholar 

  2. ASTM (2010) ASTM D4124-01—standard test methods for separation of asphalt into four fractions. American Society for Testing and Materials International, West Conshohocken

  3. Bearsley S, Forbes A, Haverkamp R (2004) Direct observation of the asphaltene structure in paving-grade bitumen using confocal laser-scaning microscopy. J Microsc 215(2):149–155

  4. Beurthey S, Zaoui A (2000) Structural morphology and relaxation spectra of viscoelastic heterogeneous materials. Eur J Mech 19(1):1–16

    Article  MATH  Google Scholar 

  5. Bodan A (1982) Polyquasispherical structure of petroleum asphalts. Chem Technol Fuels Oils 18:614–618

    Article  Google Scholar 

  6. Corbett L (1969) Composition of asphalt based on generic fractionation, using solventdeasphaltening, elution-adsorption chromatography and densimetric characterization. Anal Chem 41:576–579

    Article  Google Scholar 

  7. Cowin S (2003) A recasting of anisotropic poroelasticity in matrices of tensor components. Transp Porous Media 50:35–56

    Article  MathSciNet  Google Scholar 

  8. Donolato C (2002) Analytical and numerical inversion of the laplace-carson transform by a differential method. Comput Phys Commun 145:298–309

    Article  MATH  MathSciNet  Google Scholar 

  9. Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A 241:376–396

    Article  MATH  MathSciNet  Google Scholar 

  10. Espinat D, Rosenberg E, Scarsella M, Barre L, Fenistein D, Broseta D (1998) Colloidal structural evolution from stable to flocculated state of asphaltene solutions and heavy crudes. Planum Press, New York, pp 145–201

    Google Scholar 

  11. Forbes A, Haverkamp R, Robertson T, Bryant J, Bearsley S (2001) Studies of the microstructure of polymer-modified bitumen emulsions using confocal laser scanning microscopy. J Microsc 204(3):252–257

  12. Fritsch A, Hellmich C (2007) ’Universal’ microstructural patterns in cortical and trabecular, extracellular and extravacular bone materials: Micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244:597–620

    Article  Google Scholar 

  13. Fritsch A, Dormieux L, Hellmich C, Sanahuja J (2009a) Mechanical behaviour of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength. J Biomed Mater Res A 88A:149–161

    Article  Google Scholar 

  14. Fritsch A, Hellmich C, Dormieux L (2009b) Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theor Biol 260(2):230–252

    Article  Google Scholar 

  15. Füssl J, Lackner R, Eberhardsteiner J (2013) Creep response of bituminous mixtures—rheological model and microstructural interpretation. Meccanica. doi:10.1007/s11012-013-9775-y

  16. Handle F, Füssl J, Neudl S, Grossegger D, Eberhardsteiner L, Hofko B, Hospodka M, Blab R, Grothe H (2013) Understanding the microstructure of bitumen: a CLSM and fluorescence approach to model bitumen ageing behavior. In: Proceedings to 12th ISAP International Conference on Asphalt Pavements, Raleigh, USA, 2014

  17. Helnwein P (2001) Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors. Comput Methods Appl Mech Eng 190(22–23):2753–2770

    Article  MATH  MathSciNet  Google Scholar 

  18. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phy Solids 11:357–362

    Article  MATH  Google Scholar 

  19. Hill R (1965) Continuum micro-mechanics of elastoplastic polycrystals. J Mech Phy Solids 13(2):89–101

    Article  MATH  Google Scholar 

  20. Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech 24:1030–1053

    Article  MATH  Google Scholar 

  21. Lackner R, Blab R, Jäger A, Spiegl M, Kappl K, Wistuba M, Gagliano B, Eberhardsteiner J (2004) Multiscale modeling as the basis for reliable predictions of the behavior of multi-composed materials. In: Topping B, Soares CM (eds) Progress in engineering computational technology, vol 8. Saxe-Coburg Publications, Stirling, pp 153–187

  22. Lackner R, Spiegl M, Eberhardsteiner J, Blab R (2005) Is the low-temperature creep of asphalt mastic independent of filler shape and mieralogy? Arguments from multiscale analsysis. J Mater Civ Eng (ASCE) 17(5):485–491

    Article  Google Scholar 

  23. Laws N (1977) The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material. J Elasticity 7(1):91–97

    Article  MATH  MathSciNet  Google Scholar 

  24. Laws N, McLaughlin R (1978) Self-consistent estimates for the viscoelastic creep compliances of composite materials. Proc R Soc Lond Ser A 359:251–273

    Article  MathSciNet  Google Scholar 

  25. Lesueur D (2009) The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci 145:42–82

    Article  Google Scholar 

  26. Lu X, Langton M, Olofsson P, Redelius P (2005) Wax morphology in bitumen. J Mater Sci 40:1893–1900

  27. Mang H, Pichler B, Bader T, Füssl J, Jia X, Fritsch A, Eberhardsteiner J, Hellmich C (2012) Quantification of structural and material failure mechanisms across different length scales: from instability to brittle-ductile transitions. Acta Mech 223:1937–1957

    Article  MATH  Google Scholar 

  28. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  29. Nadeau J, Ferrari M (1998) Invariant tensor-to-matrix mappings for evaluation of tensorial expressions. J Elasticity 52:43–61

    Article  MATH  MathSciNet  Google Scholar 

  30. Nahar S, Schmets A, Scarpas A, Schitter G (2013) Temperature and thermal history dependence of the microstructure in bituminous materials. Eur Polym J 49:1964–1974

    Article  Google Scholar 

  31. Pichler C, Lackner R (2009) Upscaling of viscoelastic properties of highly-filled composites: investigation of matrix-inclusion type morphologies with power-law viscoelastic material response. Compos Sci Technol 69:2410–2420

    Article  Google Scholar 

  32. Pichler B, Hellmich C, Eberhardsteiner J (2009) Spherical and acicular representation of hydrates in a micromechanical model for cement paste: prediction of early-age elasticity and strength. Acta Mech 203:137–162

    Article  MATH  Google Scholar 

  33. Pichler C, Lackner R, Aigner E (2012) Generalized self-consistent scheme for upscaling of viscoelastic properties of highly-filled matrix-inclusion composites - application in the context of multiscale modeling of bituminous mixtures. Composites 43:457–464

    Article  Google Scholar 

  34. Read W (1950) Stress analysis for compressible viscoelastic media. J Appl Phys 21(7):671–674

    Article  MATH  MathSciNet  Google Scholar 

  35. Richardson C (1910) The modern asphalt pavement. Wiley, New York

    Google Scholar 

  36. Rostler F (1965) Fractional composition: analytical and functional significance, vol 2. Interscience Publishers, New York

    Google Scholar 

  37. Scheiner S, Hellmich C (2009) Continuum microviscoelasticity model for aging basic creep of early-age concrete. J Eng Mech 135(4):307–323

    Article  Google Scholar 

  38. Sips R (1951) General theory of deformation of viscoelastic substances. J Polym Sci 7(2–3):191–205

    Article  Google Scholar 

  39. Stehfest H (1970) Algorithm 368: numerical inversion of laplace transforms. Commun ACM 13:47–49

    Article  Google Scholar 

  40. Stroud A (1971) Approximate calculation of multiple integrals. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  41. Suquet P (ed) (1997) Continuum micromechanics. Springer, Wien

    MATH  Google Scholar 

  42. Wakashima K, Tsukamoto H (1991) Mean-field micromechanics model and its application to the analysis of thermomechanical behaviour of composite materials. Mater Sci Eng A 146(1–2):291–316

    Article  Google Scholar 

  43. Yen T (1992) The colloidal aspect of a macrostructure of petroleum asphalt. Fuel Sci Technol Int 10:723–733

    Article  Google Scholar 

  44. Zaoui A (1997) Structural morphology and constitutive behavior of microheterogeneous materials. In: Suquet P (ed) Continuum micromechanics. Springer, Wien, pp 291–347

  45. Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech (ASCE) 128(8):808–816

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Austrian Research Promotion Agency (FFG) and the sponsors Pittel+Brausewetter, Swietelsky and Nievelt through project “OEKOPHALT—Physical–chemical fundamentals on bitumen aging”. They further appreciate the support of Daniel Großegger and Thomas Riedmayer with sample preparation and execution of CR tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Eberhardsteiner.

Appendices

Appendix 1: Stroud’s integration formula

The scalar weights \(\omega (\vartheta _j,\varphi _j)\) in Eq. 11 and the orientations \(\vartheta _j\) and \(\varphi _j\) are defined in Table 5.

Table 5 Scalar weights \(\omega (\vartheta _j,\varphi _j)\) and orientations \(\vartheta _j\) and \(\varphi _j\) for Stroud’s integration [32]

Appendix 2: Transformation of local Hill’s shape tensors into global frame

To sum up the tensors in Stroud’s integration formula [32, 40] in Eq. 11, the tensors \({\mathbf{P}}^{*,{\rm arom}}_{\rm cyl}(\vartheta _j,\varphi _j,{\rm p})\) have to be given in the same base frame. While analytical expressions for \({\mathbf{P}}_{\rm cyl}\) are available in a local base frame [9, 13] coinciding with the principal axis of the ellipsoid (see Fig. 15), the corresponding components of \({\mathbf{P}}\) in \([6\times 6]\) “Kelvin–Mandel” matrix notation, reading as [7, 17, 29]

$$ {\mathbf{P}} = \left[ \begin{array}{cccccc} P_{1111} & P_{1122} & P_{1133} & \sqrt{2}P_{1123} & \sqrt{2}P_{1131} & \sqrt{2}P_{1112} \\ P_{2211} & P_{2222} & P_{2233} & \sqrt{2}P_{2223} & \sqrt{2}P_{2231} & \sqrt{2}P_{2212} \\ P_{3311} & P_{3322} & P_{3333} & \sqrt{2}P_{3323} & \sqrt{2}P_{3331} & \sqrt{2}P_{3312} \\ \sqrt{2}P_{2311} & \sqrt{2}P_{2322} & \sqrt{2}P_{2333} & 2P_{2323} & 2P_{2331} & 2P_{2312} \\ \sqrt{2}P_{3111} & \sqrt{2}P_{3122} & \sqrt{2}P_{3133} & 2P_{3123} & 2P_{3131} & 2P_{3112} \\ \sqrt{2}P_{1211} & \sqrt{2}P_{1222} & \sqrt{2}P_{1233} & 2P_{1223} & 2P_{1231} & 2P_{1212} \\ \end{array} \right] ,$$
(15)

can be transformed very efficiently from local frames to one global frame through [29]

$${\mathbf{P}}^{ef}_{cyl, global}(\varphi ,\vartheta ;p)={\mathbf{Q}}(\varphi ,\vartheta ){\mathbf{P}}^{ef}_{cyl,local}(p){\mathbf{Q}}^t(\varphi ,\vartheta ),$$
(16)

with \({\mathbf{Q}}^t(\varphi ,\vartheta )\) as the transpose of \({\mathbf{Q}}(\varphi ,\vartheta )\), and

$${\mathbf{Q}}(\varphi ,\vartheta )= \left[ \begin{array}{cccccc} q^2_{11} & q^2_{12} & q^2_{13} & \frac{2}{\sqrt{2}}q_{12}q_{13} & \frac{2}{\sqrt{2}}q_{13}q_{11} & \frac{2}{\sqrt{2}}q_{11}q_{12} \\ q^2_{21} & q^2_{22} & q^2_{23} & \frac{2}{\sqrt{2}}q_{22}q_{23} & \frac{2}{\sqrt{2}}q_{23}q_{21} & \frac{2}{\sqrt{2}}q_{21}q_{22} \\ q^2_{31} & q^2_{32} & q^2_{33} & \frac{2}{\sqrt{2}}q_{32}q_{33} & \frac{2}{\sqrt{2}}q_{33}q_{31} & \frac{2}{\sqrt{2}}q_{31}q_{32} \\ \sqrt{2} q_{21}q_{31} & \sqrt{2} q_{22}q_{32} & \sqrt{2} q_{23}q_{33} & q_{23}q_{32}+q_{33}q_{22} & q_{21}q_{33}+q_{31}q_{23} & q_{22}q_{31}+q_{32}q_{21} \\ \sqrt{2} q_{31}q_{11} & \sqrt{2} q_{32}q_{12} & \sqrt{2} q_{33}q_{13} & q_{33}q_{12}+q_{13}q_{32} & q_{31}q_{13}+q_{11}q_{33} & q_{32}q_{11}+q_{12}q_{31} \\ \sqrt{2} q_{11}q_{21} & \sqrt{2} q_{12}q_{22} & \sqrt{2} q_{13}q_{23} & q_{13}q_{22}+q_{23}q_{12} & q_{11}q_{23}+q_{21}q_{13} & q_{12}q_{21}+q_{22}q_{11} \\ \end{array} \right] .$$
(17)

The components \(q_{ij}\) are the elements of the matrix \({\mathbf{q}}\) in \({\mathbf{Q}}\), reading as

$$q_{ij}=[{\mathbf{e}}_1, {\mathbf{e}}_2, {\mathbf{e}}_3], \quad \quad i=1\ldots 3,\quad j=1\ldots 3,$$
(18)
$${\mathbf{e}}_{1} = \left[\begin{array}{l} \cos \varphi \cos \vartheta \\ \sin \varphi \cos \vartheta \\ -\sin \varphi \\ \end{array} \right], \quad {\mathbf{e}}_{2} = \left[ \begin{array}{c} -\sin \varphi \\ \cos \varphi \\ 0 \end{array} \right], \quad {\mathbf{e}}_{3} = \left[\begin{array}{c} \cos \varphi \sin \vartheta \\ \sin \varphi \sin \vartheta \\ \cos \varphi \\ \end{array} \right] .$$
(19)
Fig. 15
figure 15

Cylindrical inclusion representing the interaction of micelles [14]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eberhardsteiner, L., Füssl, J., Hofko, B. et al. Influence of asphaltene content on mechanical bitumen behavior: experimental investigation and micromechanical modeling. Mater Struct 48, 3099–3112 (2015). https://doi.org/10.1617/s11527-014-0383-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0383-7

Keywords

Navigation