Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Self-disseminating vaccines to suppress zoonoses

Abstract

The SARS-CoV-2 epidemic is merely the most recent demonstration that our current approach to emerging zoonotic infectious disease is ineffective. SARS, MERS, Ebola, Nipah and an array of arenavirus infections sporadically spillover into human populations and are often contained only as a result of their poor transmission in human hosts, coupled with intense public health control efforts in the early stages of an emerging epidemic. It is now more apparent than ever that we need a better and more proactive approach. One possibility is to eliminate the threat of spillover before it occurs using vaccines capable of autonomously spreading through wild animal reservoirs. We are now poised to begin developing self-disseminating vaccines targeting a wide range of human pathogens, but important decisions remain about how they can be most effectively designed and used to target pathogens with a high risk of spillover and/or emergence. In this Perspective, we first review the basic epidemiological theory establishing the feasibility and utility of self-disseminating vaccines. We then outline a road map for overcoming remaining technical challenges: identifying high-risk pathogens before they emerge, optimizing vaccine design with an eye to evolution, behaviour and epidemiology, and minimizing the risk of unintended consequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of transmissible and transferable vaccines.

Katy Riendeau

Fig. 2: The reduction in vaccination effort (ρ) provided by vaccine self-dissemination for pathogens and vaccines with differing R0.
Fig. 3: Two methods for building transmissible vaccines.

Katy Riendeau

Similar content being viewed by others

References

  1. Redding, D. W., Moses, L. M., Cunningham, A. A., Wood, J. & Jones, K. E. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol. Evol. 7, 646–655 (2016).

    Google Scholar 

  2. McCormick, J. B. & Fisher-Hoch, S. P. in Arenaviruses I: The Epidemiology, Molecular and Cell Biology of Arenaviruses — Current Topics in Microbiology and Immunology Vol. 262 (ed. Oldstone, M. B. A.) 75–109 (Springer, 2002).

  3. Jonsson, C. B., Figueiredo, L. T. M. & Vapalahti, O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 23, 412–441 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Edson, D. et al. Routes of Hendra virus excretion in naturally-infected flying-foxes: implications for viral transmission and spillover risk. PLoS ONE 10, e0140670 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Luby, S. P., Gurley, E. S. & Jahangir Hossain, M. Transmission of human infection with Nipah virus. Clin. Infect. Dis. 49, 1743–1748 (2009).

    PubMed  Google Scholar 

  6. Georgiou, G. et al. Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15, 29–34 (1997).

    CAS  PubMed  Google Scholar 

  7. Leitner, W. W., Ying, H. & Restifo, N. P. DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 18, 765–777 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rollier, C. S., Reyes-Sandoval, A., Cottingham, M. G., Ewer, K. & Hill, A. V. S. Viral vectors as vaccine platforms: deployment in sight. Curr. Opin. Immunol. 23, 377–382 (2011).

    CAS  PubMed  Google Scholar 

  10. Ferretti, L. et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 368, eabb6936 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. Rupprecht, C. E., Hanlon, C. A. & Slate, D. in Control of Infectious Animal Diseases by Vaccination — Developments in Biologicals Vol. 119 (eds Schudel, A. & Lombard, M.) 173–184 (Karger, 2004).

  13. Bull, J. J., Smithson, M. W. & Nuismer, S. L. Transmissible viral vaccines. Trends Microbiol. 26, 6–15 (2018).

    CAS  PubMed  Google Scholar 

  14. Murphy, A. A., Redwood, A. J. & Jarvis, M. A. Self-disseminating vaccines for emerging infectious diseases. Expert Rev. Vaccines 15, 31–39 (2016).

    CAS  PubMed  Google Scholar 

  15. Shellam, G. R. The potential of murine cytomegalovirus as a viral vector for immunocontraception. Reprod. Fertil. Dev. 6, 401–409 (1994).

    CAS  PubMed  Google Scholar 

  16. Tyndale-Biscoe, C. H. Virus-vectored immunocontraception of feral mammals. Reprod. Fertil. Dev. 6, 281–287 (1994).

    CAS  PubMed  Google Scholar 

  17. Barcena, J. et al. Horizontal transmissible protection against myxomatosis and rabbit hemorrhagic disease by using a recombinant myxoma virus. J. Virol. 74, 1114–1123 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Torres, J. M. et al. First field trial of a transmissible recombinant vaccine against myxomatosis and rabbit hemorrhagic disease. Vaccine 19, 4536–4543 (2001).

    CAS  PubMed  Google Scholar 

  19. Angulo, E. & Barcena, J. Towards a unique and transmissible vaccine against myxomatosis and rabbit haemorrhagic disease for rabbit populations. Wildl. Res. 34, 567–577 (2007).

    CAS  Google Scholar 

  20. Nuismer, S. L. et al. Eradicating infectious disease using weakly transmissible vaccines. Proc. R. Soc. B 283, 20161903 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Basinski, A. J., Nuismer, S. L. & Remien, C. H. A little goes a long way: weak vaccine transmission facilitates oral vaccination campaigns against zoonotic pathogens. PLoS Negl. Trop. Dis. 13, e0007251 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Basinski, A. J. et al. Evaluating the promise of recombinant transmissible vaccines. Vaccine 36, 675–682 (2018).

    CAS  PubMed  Google Scholar 

  23. Smithson, M. W., Basinki, A. J., Nuismer, S. L. & Bull, J. J. Transmissible vaccines whose dissemination rates vary through time, with applications to wildlife. Vaccine 37, 1153–1159 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lecompte, E. et al. Mastomys natalensis and Lassa fever, West Africa. Emerg. Infect. Dis. 12, 1971–1974 (2006).

    PubMed  PubMed Central  Google Scholar 

  25. Olayemi, A. et al. New hosts of the Lassa virus. Sci. Rep. 6, 25280 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Douglass, R. J. et al. Longitudinal studies of Sin Nombre virus in deer mouse-dominated ecosystems of Montana. Am. J. Trop. Med. Hyg. 65, 33–41 (2001).

    CAS  PubMed  Google Scholar 

  27. Luis, A. D., Douglass, R. J., Mills, J. N. & Bjornstad, O. N. The effect of seasonality, density and climate on the population dynamics of Montana deer mice, important reservoir hosts for Sin Nombre hantavirus. J. Anim. Ecol. 79, 462–470 (2010).

    PubMed  Google Scholar 

  28. Viana, M. et al. Assembling evidence for identifying reservoirs of infection. Trends Ecol. Evol. 29, 270–279 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Fenton, A., Streicker, D. G., Petchey, O. L. & Pedersen, A. B. Are all hosts created equal? Partitioning host species contributions to parasite persistence in multihost communities. Am. Nat. 186, 610–622 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Fichet-Calvet, E. et al. Fluctuation of abundance and Lassa virus prevalence in Mastomys natalensis in Guinea, West Africa. Vector-Borne Zoonotic Dis. 7, 119–128 (2007).

    PubMed  Google Scholar 

  31. Marien, J. et al. Evaluation of rodent control to fight Lassa fever based on field data and mathematical modelling. Emerg. Microbes Infect. 8, 640–649 (2019).

    PubMed  PubMed Central  Google Scholar 

  32. Towner, J. S. et al. Marburg virus infection detected in a common african bat. PLoS ONE 2, e764 (2007).

    PubMed  PubMed Central  Google Scholar 

  33. Nziza, J. et al. Coronaviruses detected in bats in close contact with humans in Rwanda. EcoHealth 17, 152–159 (2020).

    PubMed  Google Scholar 

  34. Anthony, S. J. et al. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. Mbio 8, e00373–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ge, X.-Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bird, B. H. & Mazet, J. A. K. Detection of emerging zoonotic pathogens: an integrated one health approach. Annu. Rev. Anim. Biosci. 6, 121–139 (2018).

    CAS  PubMed  Google Scholar 

  37. Goldstein, T. et al. The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat. Microbiol. 3, 1084–1089 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pernet, O. et al. Evidence for henipavirus spillover into human populations in Africa. Nat. Commun. 5, 5342 (2014).

    PubMed  Google Scholar 

  39. Grard, G. et al. A novel rhabdovirus associated with acute hemorrhagic fever in Central Africa. PLoS Pathog. 8, e1002924 (2012).

    PubMed  PubMed Central  Google Scholar 

  40. Han, B. A. & Drake, J. M. Future directions in analytics for infectious disease intelligence. EMBO Rep. 17, 785–789 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl Acad. Sci. USA 112, 7039–7044 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Han, B. A. et al. Undiscovered bat hosts of filoviruses. PLoS Negl. Trop. Dis. 10, e0004815 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Guth, S., Visher, E., Boots, M. & Brook, C. E. Host phylogenetic distance drives trends in virus virulence and transmissibility across the animal-human interface. Philos. Trans. R. Soc. B 374, 20190296 (2019).

    Google Scholar 

  44. Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pepin, K. M., Lass, S., Pulliam, J. R. C., Read, A. F. & Lloyd-Smith, J. O. Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat. Rev. Microbiol. 8, 802–813 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Babayan, S. A., Orton, R. J. & Streicker, D. G. Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes. Science 362, 577–580 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bakker, K. M. et al. Fluorescent biomarkers demonstrate prospects for spreadable vaccines to control disease transmission in wild bats. Nat. Ecol. Evol. 3, 1697–1704 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Garnier, R., Gandon, S., Chaval, Y., Charbonnel, N. & Boulinier, T. Evidence of cross-transfer of maternal antibodies through allosuckling in a mammal: potential importance for behavioral ecology. Mamm. Biol. 78, 361–364 (2013).

    Google Scholar 

  49. Stading, B. et al. Protection of bats (Eptesicus fuscus) against rabies following topical or oronasal exposure to a recombinant raccoon poxvirus vaccine. PLoS Negl. Trop. Dis. 11, e0005958 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Schreiner, C. L., Nuismer, S. L. & Basinski, A. J. When to vaccinate a fluctuating wildlife population: is timing everything? J. Appl. Ecol. 57, 307–319 (2020).

    PubMed  Google Scholar 

  51. Varrelman, T. J., Basinski, A. J., Remien, C. H. & Nuismer, S. L. Transmissible vaccines in heterogeneous populations: implications for vaccine design. One Health 7, 100084 (2019).

    PubMed  PubMed Central  Google Scholar 

  52. Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009).

    CAS  PubMed  Google Scholar 

  53. Kew, O. M., Sutter, R. W., de Gourville, E. M., Dowdle, W. R. & Pallansch, M. A. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu. Rev. Microbiol. 59, 587–635 (2005).

    CAS  PubMed  Google Scholar 

  54. Bull, J. J. Evolutionary reversion of live viral vaccines: can genetic engineering subdue it? Virus Evol. 1, vev005 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Lauring, A. S., Jones, J. O. & Andino, R. Rationalizing the development of live attenuated virus vaccines. Nat. Biotechnol. 28, 573–579 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nuismer, S. L., Basinski, A. & Bull, J. J. Evolution and containment of transmissible recombinant vector vaccines. Evol. Appl. 12, 1595–1609 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. Kew, O. M. et al. Circulating vaccine-derived polioviruses: current state of knowledge. Bull. World Health Organ. 82, 16–23 (2004).

    PubMed  PubMed Central  Google Scholar 

  58. Hampson, K. et al. Estimating the global burden of endemic canine rabies. PLoS Negl. Trop. Dis. 9, e0003709 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. Cost of the Ebola Epidemic (US Centers for Disease Control and Prevention, 2020); https://go.nature.com/38iF7cg

  60. Forum on Microbial Threats Learning from SARS: Preparing for the Next Disease Outbreak: Workshop Summary (National Academies Press, 2004).

Download references

Acknowledgements

We thank K. Riendeau for developing Figs. 1 and 3. S.L.N. and J.J.B. were supported by National Institutes of Health (NIH) grant no. R01GM122079.

Author information

Authors and Affiliations

Authors

Contributions

S.L.N. and J.J.B. conceived of this Perspective and contributed to writing and revision.

Corresponding author

Correspondence to Scott L. Nuismer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuismer, S.L., Bull, J.J. Self-disseminating vaccines to suppress zoonoses. Nat Ecol Evol 4, 1168–1173 (2020). https://doi.org/10.1038/s41559-020-1254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-1254-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing